Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Biomol Struct Dyn ; : 1-15, 2023 May 26.
Article in English | MEDLINE | ID: covidwho-20242117

ABSTRACT

Phthalocyanine and hypericin have been previously identified as possible SARS-CoV-2 Spike glycoprotein fusion inhibitors through a virtual screening procedure. In this paper, atomistic simulations of metal-free phthalocyanines and atomistic and coarse-grained simulations of hypericins, placed around a complete model of the Spike embedded in a viral membrane, allowed to further explore their multi-target inhibitory potential, uncovering their binding to key protein functional regions and their propensity to insert in the membrane. Following computational results, pre-treatment of a pseudovirus expressing the SARS-CoV-2 Spike protein with low compounds concentrations resulted in a strong inhibition of its entry into cells, suggesting the activity of these molecules should involve the direct targeting of the viral envelope surface. The combination of computational and in vitro results hence supports the role of hypericin and phthalocyanine as promising SARS-CoV-2 entry inhibitors, further endorsed by literature reporting the efficacy of these compounds in inhibiting SARS-CoV-2 activity and in treating hospitalized COVID-19 patients.Communicated by Ramaswamy H. Sarma.

2.
Clin Med Insights Case Rep ; 16: 11795476231166626, 2023.
Article in English | MEDLINE | ID: covidwho-2296359

ABSTRACT

This case report describes the sudden presentation and successful cessation of psychiatric symptoms following the first administration of the Moderna mRNA vaccine against the SARS-CoV-2 virus during early 2021. The process of discovery of symptoms is described, along with an empirical procedure which identified St. John's wort as the mediating agent. Implications for self-medication of mild depression are discussed. Hypericin, a constituent agent in St. John's wort, interacts with the SARS-CoV-2 spike protein. Sensitization to hypericin following vaccine administration is consistent with the observed symptoms.

3.
Zeitschrift fur Phytotherapie ; 43(6):262-264, 2022.
Article in German | EMBASE | ID: covidwho-2160367

ABSTRACT

Due to the SARS-CoV-2 pandemic, research around the world has been geared towards developing effective and inexpensive therapy options. In this context, a German research group examined an extract from St. John's wort (Hypericum perforatum) and its various pure substances for possible activity against the novel coronavirus. Initially, the basic effectiveness was shown in a simplified virus model, then further tests were carried out on several virus variants. Remarkably low IC 50values could be determined in these in vitro studies, particularly for hypericin. Copyright © 2022 Hippokrates Verlag GmbH. All rights reserved.

4.
Deutsche Apotheker Zeitung ; 162(20), 2022.
Article in German | EMBASE | ID: covidwho-1935197
5.
Curr Pharm Des ; 28(12): 969-980, 2022.
Article in English | MEDLINE | ID: covidwho-1923807

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has caused a global pandemic with a high mortality and morbidity rate worldwide. The COVID-19 vaccines that are currently in development or already approved are expected to provide at least some protection against the emerging variants of the virus, but the mutations may reduce the efficacy of the existing vaccines. Purified phytochemicals from medicinal plants provide a helpful framework for discovering new therapeutic leads as they have long been employed in traditional medicine to treat many disorders. OBJECTIVE: The objectives of the study are to exploit the anti-HIV bioactive compounds against SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) through molecular docking studies and to evaluate the Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of potential compounds. METHODS: Molecular docking was performed to study the interaction of ligands with the target sites of RdRp protein (PDB: 6M71) using AutoDock Vina. The ADMET properties of potential compounds were predicted using the pkCSM platform. RESULTS: A total of 151 phytochemicals derived from the medicinal plants with recognized antiviral activity and 18 anti-HIV drugs were virtually screened against COVID-19 viral RdRp to identify putative inhibitors that facilitate the development of potential anti-COVID-19 drug candidates. The computational studies identified 34 compounds and three drugs inhibiting viral RdRp with binding energies ranging from -10.2 to -8.5 kcal/mol. Among them, five compounds, namely Michellamine B, Quercetin 3-O-(2'',6''-digalloyl)-beta-Dgalactopyranoside, Corilagin, Hypericin, and 1,2,3,4,6-Penta-O-galloyl-beta-D-glucose residues, bound efficiently with the binding site of RdRp. Besides, Lopinavir, Maraviroc, and Remdesivir drugs also inhibited SARS-CoV-2 polymerase. In addition, the ADMET properties of top potential compounds were also predicted in comparison to the drugs. CONCLUSION: The present study suggested that these potential drug candidates can be further subjected to in vitro and in vivo studies that may help develop effective anti-COVID-19 drugs.


Subject(s)
Anti-HIV Agents , COVID-19 Drug Treatment , COVID-19 Vaccines , Humans , Molecular Docking Simulation , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2
6.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 25.
Article in English | MEDLINE | ID: covidwho-1810076

ABSTRACT

For almost two years, the COVID-19 pandemic has constituted a major challenge to human health, particularly due to the lack of efficient antivirals to be used against the virus during routine treatment interventions. Multiple treatment options have been investigated for their potential inhibitory effect on SARS-CoV-2. Natural products, such as plant extracts, may be a promising option, as they have shown an antiviral activity against other viruses in the past. Here, a quantified extract of Hypericum perforatum was tested and found to possess a potent antiviral activity against SARS-CoV-2. The antiviral potency of the extract could be attributed to the naphtodianthrones hypericin and pseudohypericin, in contrast to other tested ingredients of the plant material, which did not show any antiviral activity. Hypericum perforatum and its main active ingredient hypericin were also effective against different SARS-CoV-2 variants (Alpha, Beta, Delta, and Omicron). Concerning its mechanism of action, evidence was obtained that Hypericum perforatum and hypericin may hold a direct virus-blocking effect against SARS-CoV-2 virus particles. Taken together, the presented data clearly emphasize the promising antiviral activity of Hypericum perforatum and its active ingredients against SARS-CoV-2 infections.

7.
ACS Appl Mater Interfaces ; 14(12): 14025-14032, 2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1751668

ABSTRACT

Hypericin is a photosensitizing drug that is active against membrane-enveloped viruses and therefore constitutes a promising candidate for the treatment of SARS-CoV-2 infections. The antiviral efficacy of hypericin is largely determined by its affinity toward viral components and by the number of active molecules loaded on single viruses. Here we use an experimental approach to follow the interaction of hypericin with SARS-CoV-2, and we evaluate its antiviral efficacy, both in the dark and upon photoactivation. Binding to viral particles is directly visualized with fluorescence microscopy, and a strong affinity for the viral particles, most likely for the viral envelope, is measured spectroscopically. The loading of a maximum of approximately 30 molecules per viral particle is estimated, despite with marked heterogeneity among particles. Because of this interaction, nanomolar concentrations of photoactivated hypericin substantially reduce virus infectivity on Vero E6 cells, but a partial effect is also observed in dark conditions, suggesting multiple mechanisms of action for this drug.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Animals , Anthracenes , Antiviral Agents/chemistry , Chlorocebus aethiops , Perylene/analogs & derivatives , SARS-CoV-2 , Vero Cells
8.
Front Microbiol ; 13: 828984, 2022.
Article in English | MEDLINE | ID: covidwho-1715014

ABSTRACT

The COVID-19 pandemic has had an unprecedented impact on the global economy and public health. Its etiologic agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible, pathogenic and has a rapid global spread. Currently, the increase in the number of new confirmed cases has been slowed down due to the increase of vaccination in some regions of the world. Still, the rise of new variants has influenced the detection of additional waves of rising cases that some countries have experienced. Since the virus replication cycle is composed of many distinct stages, some viral proteins related to them, as the main-protease (Mpro) and RNA dependent RNA polymerase (RdRp), constitute individual potential antiviral targets. In this study, we challenged the mentioned enzymes against compounds pre-approved by health regulatory agencies in a virtual screening and later in Molecular Mechanics/Poisson-Bolzmann Surface Area (MM/PBSA) analysis. Our results showed that, among the identified potential drugs with anti-SARS-CoV-2 properties, Hypericin, an important component of the Hypericum perforatum that presents antiviral and antitumoral properties, binds with high affinity to viral Mpro and RdRp. Furthermore, we evaluated the activity of Hypericin anti-SARS-CoV-2 replication in an in vitro model of Vero-E6 infected cells. Therefore, we show that Hypericin inhibited viral replication in a dose dependent manner. Moreover, the cytotoxicity of the compound, in cultured cells, was evaluated, but no significant activity was found. Thus, the results observed in this study indicate that Hypericin is an excellent candidate for repurposing for the treatment of COVID-19, with possible inhibition of two important phases of virus maturation.

9.
Chem Phys Lett ; : 139294, 2021 Dec 18.
Article in English | MEDLINE | ID: covidwho-1588009

ABSTRACT

The SARS-CoV-2 papain-like (PLpro) protease is essential for viral replication. We investigated potential antiviral effects of hypericin relative to the well-known noncovalent PLpro inhibitor GRL-0617. Molecular dynamics and PELE Monte Carlo simulations highlight favourable binding of hypericin and GRL-0617 to the naphthalene binding pocket of PLpro. Although not potent as GRL-0617 (45.8 vs 1.6µM for protease activity, respectively), in vitro fluorogenic enzymatic assays with hypericin show concentration-dependent inhibition of both PLpro protease and deubiquitinating activities. Given its use in supplementations and the FDA conditional approval of a synthetic version, further evaluation of hypericin as a potential SARS-CoV-2 antiviral is warranted.

10.
J Mol Graph Model ; 110: 108050, 2022 01.
Article in English | MEDLINE | ID: covidwho-1458690

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the ongoing COVID-19 pandemic. With some notable exceptions, safe and effective vaccines, which are now being widely distributed globally, have largely begun to stabilise the situation. However, emerging variants of concern and vaccine hesitancy are apparent obstacles to eradication. Therefore, the need for the development of potent antivirals is still of importance. In this context, the SARS-CoV-2 main protease (Mpro) is a critical target and numerous clinical trials, predominantly in the private domain, are currently in progress. Here, our aim was to extend our previous studies, with hypericin and cyanidin-3-O-glucoside, as potential inhibitors of the SARS-CoV-2 Mpro. Firstly, we performed all-atom microsecond molecular dynamics simulations, which highlight the stability of the ligands in the Mpro active site over the duration of the trajectories. We also invoked PELE Monte Carlo simulations which indicate that both hypericin and cyanidin-3-O-glucoside preferentially interact with the Mpro active site and known allosteric sites. For further validation, we performed an in vitro enzymatic activity assay that demonstrated that hypericin and cyanidin-3-O-glucoside inhibit Mpro activity in a dose-dependent manner at biologically relevant (µM) concentrations. However, both ligands are much less potent than the well-known covalent antiviral GC376, which was used as a positive control in our experiments. Nevertheless, the biologically relevant activity of hypericin and cyanidin-3-O-glucoside is encouraging. In particular, a synthetic version of hypericin has FDA orphan drug designation, which could simplify potential clinical evaluation in the context of COVID-19.


Subject(s)
COVID-19 , Pandemics , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Monte Carlo Method , Protease Inhibitors/pharmacology , SARS-CoV-2
11.
Viruses ; 13(9)2021 09 14.
Article in English | MEDLINE | ID: covidwho-1411090

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) is an Alphacoronavirus (α-CoV) that causes high mortality in infected piglets, resulting in serious economic losses in the farming industry. Hypericin is a dianthrone compound that has been shown as an antiviral activity on several viruses. Here, we first evaluated the antiviral effect of hypericin in PEDV and found the viral replication and egression were significantly reduced with hypericin post-treatment. As hypericin has been shown in SARS-CoV-2 that it is bound to viral 3CLpro, we thus established a molecular docking between hypericin and PEDV 3CLpro using different software and found hypericin bound to 3CLpro through two pockets. These binding pockets were further verified by another docking between hypericin and PEDV 3CLpro pocket mutants, and the fluorescence resonance energy transfer (FRET) assay confirmed that hypericin inhibits the PEDV 3CLpro activity. Moreover, the alignments of α-CoV 3CLpro sequences or crystal structure revealed that the pockets mediating hypericin and PEDV 3CLpro binding were highly conserved, especially in transmissible gastroenteritis virus (TGEV). We then validated the anti-TGEV effect of hypericin through viral replication and egression. Overall, our results push forward that hypericin was for the first time shown to have an inhibitory effect on PEDV and TGEV by targeting 3CLpro, and it deserves further attention as not only a pan-anti-α-CoV compound but potentially also as a compound of other coronaviral infections.


Subject(s)
Alphacoronavirus/drug effects , Alphacoronavirus/physiology , Anthracenes/pharmacology , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Infections/virology , Perylene/analogs & derivatives , Virus Replication/drug effects , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Coronavirus 3C Proteases/chemistry , Enzyme Activation/drug effects , Models, Molecular , Perylene/pharmacology , Porcine epidemic diarrhea virus/drug effects , Recombinant Proteins , Structure-Activity Relationship , Swine , Swine Diseases/virology , Vero Cells
12.
Molecules ; 26(13)2021 Jun 29.
Article in English | MEDLINE | ID: covidwho-1304689

ABSTRACT

Antiviral action of various photosensitizers is already summarized in several comprehensive reviews, and various mechanisms have been proposed for it. However, a critical consideration of the matter of the area is complicated, since the exact mechanisms are very difficult to explore and clarify, and most publications are of an empirical and "phenomenological" nature, reporting a dependence of the antiviral action on illumination, or a correlation of activity with the photophysical properties of the substances. Of particular interest is substance-assisted photogeneration of highly reactive singlet oxygen (1O2). The damaging action of 1O2 on the lipids of the viral envelope can probably lead to a loss of the ability of the lipid bilayer of enveloped viruses to fuse with the lipid membrane of the host cell. Thus, lipid bilayer-affine 1O2 photosensitizers have prospects as broad-spectrum antivirals against enveloped viruses. In this short review, we want to point out the main types of antiviral photosensitizers with potential affinity to the lipid bilayer and summarize the data on new compounds over the past three years. Further understanding of the data in the field will spur a targeted search for substances with antiviral activity against enveloped viruses among photosensitizers able to bind to the lipid membranes.


Subject(s)
Antiviral Agents , Membrane Lipids/metabolism , Photosensitizing Agents , Viral Envelope/metabolism , Virus Diseases , Viruses/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacokinetics , Photosensitizing Agents/therapeutic use , Singlet Oxygen , Virus Diseases/drug therapy , Virus Diseases/metabolism
13.
J Mol Graph Model ; 104: 107851, 2021 05.
Article in English | MEDLINE | ID: covidwho-1053559

ABSTRACT

The SARS-CoV-2 virus is causing COVID-19, an ongoing pandemic, with extraordinary global health, social, and political implications. Currently, extensive research and development efforts are aimed at producing a safe and effective vaccine. In the interim, small molecules are being widely investigated for antiviral effects. With respect to viral replication, the papain-like (PLpro) and main proteases (Mpro), are critical for processing viral replicase polypeptides. Further, the PLpro possesses deubiquitinating activity affecting key signalling pathways, including inhibition of interferon and innate immune antagonism. Therefore, inhibition of PLpro activity with small molecules is an important research direction. Our aim was to focus on identification of potential inhibitors of the protease activity of SARS-CoV-2 PLpro. We investigated 300 small compounds derived predominantly from our OliveNet™ library (222 phenolics) and supplemented with synthetic and dietary compounds with reported antiviral activities. An initial docking screen, using the potent and selective noncovalent PLpro inhibitor, GRL-0617 as a control, enabled a selection of 30 compounds for further analyses. From further in silico analyses, including docking to scenes derived from a publicly available molecular dynamics simulation trajectory (100 µs PDB 6WX4; DESRES-ANTON-11441075), we identified lead compounds for further in vitro evaluation using an enzymatic inhibition assay measuring SARS-CoV-2 PLpro protease activity. Our findings indicate that hypericin possessed inhibition activity, and both rutin and cyanidin-3-O-glucoside resulted in a concentration-dependent inhibition of the PLpro, with activity in the micromolar range. Overall, hypericin, rutin, and cyanidin-3-O-glucoside can be considered lead compounds requiring further characterisation for potential antiviral effects in appropriate model systems.


Subject(s)
Anthocyanins/chemistry , Antiviral Agents/chemistry , Coronavirus 3C Proteases/chemistry , Perylene/analogs & derivatives , Rutin/chemistry , Small Molecule Libraries/chemistry , Anthocyanins/pharmacology , Anthracenes , Antiviral Agents/pharmacology , Binding Sites , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Enzyme Assays , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Perylene/chemistry , Perylene/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Quantum Theory , Rutin/pharmacology , SARS-CoV-2/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Small Molecule Libraries/pharmacology , Thermodynamics , COVID-19 Drug Treatment
14.
Comput Biol Chem ; 89: 107408, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-898662

ABSTRACT

Caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic is ongoing, with no proven safe and effective vaccine to date. Further, effective therapeutic agents for COVID-19 are limited, and as a result, the identification of potential small molecule antiviral drugs is of particular importance. A critical antiviral target is the SARS-CoV-2 main protease (Mpro), and our aim was to identify lead compounds with potential inhibitory effects. We performed an initial molecular docking screen of 300 small molecules, which included phenolic compounds and fatty acids from our OliveNet™ library (224), and an additional group of curated pharmacological and dietary compounds. The prototypical α-ketoamide 13b inhibitor was used as a control to guide selection of the top 30 compounds with respect to binding affinity to the Mpro active site. Further studies and analyses including blind docking were performed to identify hypericin, cyanidin-3-O-glucoside and SRT2104 as potential leads. Molecular dynamics simulations demonstrated that hypericin (ΔG = -18.6 and -19.3 kcal/mol), cyanidin-3-O-glucoside (ΔG = -50.8 and -42.1 kcal/mol), and SRT2104 (ΔG = -8.7 and -20.6 kcal/mol), formed stable interactions with the Mpro active site. An enzyme-linked immunosorbent assay indicated that, albeit, not as potent as the covalent positive control (GC376), our leads inhibited the Mpro with activity in the micromolar range, and an order of effectiveness of hypericin and cyanidin-3-O-glucoside > SRT2104 > SRT1720. Overall, our findings, and those highlighted by others indicate that hypericin and cyanidin-3-O-glucoside are suitable candidates for progress to in vitro and in vivo antiviral studies.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 3C Proteases/metabolism , Coronavirus Protease Inhibitors/pharmacology , Enzyme-Linked Immunosorbent Assay , SARS-CoV-2/drug effects , Small Molecule Libraries/pharmacology , Antiviral Agents/chemistry , Coronavirus Protease Inhibitors/chemistry , Fatty Acids/chemistry , Fatty Acids/pharmacology , Humans , Ligands , Microbial Sensitivity Tests , Models, Molecular , Phenols/chemistry , Phenols/pharmacology , SARS-CoV-2/metabolism , Small Molecule Libraries/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL